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Nonlinear dynamics of the TMMC chain
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Abstract. We investigate the integrability of the TMMC antiferromagnetic chain in a transverse
external magnetic field for thex–y andy–z planar configurations. It is shown that the system
is nonintegrable even when the magnetic external field and the anisotropy are not present
simultaneously.

The problem investigated in this paper is that of the nature of some low-temperature
nonlinear magnetic excitations in the easy-plane spin-5/2 anisotropic antiferromagnetic chain
(CH3)4–NMnCl3 (TMMC). Nuclear spin–lattice relaxation measurements [1] in the presence
of an external magnetic field, perpendicular to the chain direction, have been performed on
different nuclei of this magnetic chain, showing an interesting behaviour ofT −1

1 : it increases
exponentially as a function of the external field, at fixed temperature. A simple sine–Gordon
theory explains these results for fields under 40 kOe; thereT −1

1 decreases with the field. For
stronger fields the increase ofT −1

1 suggests a deviation from the sine–Gordon theory since
it may be interpreted by a switching of the roles of the magnetic field and the anisotropy
[2]. Consequently, two extreme cases are predicted to occur as regards low-temperature
excitations: first, a soliton consisting in a rotation of the spins up to an angleπ from an
antiferromagnetic or a spin-flop order in a plane perpendicular to the chain direction (x–y

soliton), and second, an analogous rotation but now in a plane containing the chain direction
(y–z soliton). The chain direction is taken to be thez-axis.

Literature pertinent to magnetic excitations in this system can be found in [2–9].
We are interested in the analysis of the coherent and chaotic structures of the TMMC

chain. A complete analysis of these structures has been performed in [10] for a classical
continuum anisotropic ferromagnetic chain in the presence of a transverse field; it is found
that this chain is integrable only in the absence of either the anisotropic interaction or the
external magnetic field. For nonintegrability, it is important to consider [11] for a classical
nonintegrable triangular three-spin system with antiferromagnetic exchange coupling.

The formalism used in this paper is that of the coherent states applied to a Heisenberg
Hamiltonian. Spin operators are transformed in operators of two independent harmonic
oscillators using Schwinger transformations [12]. Making use of the semi-classical
approximation in which the spins are considered as continuously projected along the
quantization axis we write down the equations of motion for these operators and project
in the basis of coherent states, obtaining nonlinear difference equations for variables that
are easy to interpret in terms of physical magnitudes. For simplicity we consider only the
extreme cases:x–y andy–z solitons; nevertheless the theory is for the general case where

† E-mail: rferrer@macul.ciencias.uchile.cl.

0953-8984/96/295437+14$19.50c© 1996 IOP Publishing Ltd 5437



5438 R Ferrer

Figure 1. Antiferromagnetic ordering of the two sublattices on the basis of which the system is
described using Hamiltonian (2).

Figure 2. The geometry affecting two neighbouring spins in the antiferromagnetic chain.

both kinds of excitation are present, i.e., when the external field and the anisotropy are
present simultaneously. The extreme cases correspond to static configurations that may also
be obtained by minimizing the energy of the general coherent state.

Our study considers the chain modelled by an easy-plane Heisenberg Hamiltonian:

H = J

2

N∑
n=1

∑
δ=±1

Sn · Sn+δ + D

N∑
n=1

(Sz
n)

2 − h
∑

Sx
n (1)

whereJ > 0 is the antiferromagnetic nearest-neighbour exchange interaction,D > 0 is the
anisotropy parameter andh ≡ gµBH with H the intensity of the external magnetic field in
the x-direction perpendicular to the chain.g is theg-factor andµB is the Bohr magneton.
The labeln represents the lattice sites.

As we will not work with small deviations of the spins with respect to any axis, we
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describe the deviations from ana priori antiferromagnetic state in a two- (A and B) sublattice
model, as indicated in figure 1. Then, there exists the following correspondence between
the raising and the lowering spin operators acting on each sublattice:

S
†
A ↔ S−

B S−
A ↔ S

†
B Sz

A ↔ −Sz
B. (2)

In this way,Sx
A ↔ Sx

B andS
y

A ↔ −S
y

B .
In terms of these operators the Hamiltonian takes the form

H = J

2

N∑
n=1

∑
δ=±1

[
1

2
(S†

nS
†
n+δ + S−

n S−
n+δ) − Sz

nS
z
n+δ

]
+ D

N∑
n=1

(Sz
n)

2 − h

2

N∑
n=1

(S†
n + S−

n ). (3)

To complete the picture we make use of the Schwinger transformations linking the spin
operators with two independent bosonic fields:

Sz = 1

2
(a†a − b†b) S† = a†b S− = b†a (4)

where a and b are the lowering operators of two simple harmonic oscillators with the
constraint a†a + b†b = 2S on the total Bose occupation. In this representation the
Hamiltonian can be treated in the framework of the coherent states [13], in which we
define the displacement operators

D(αn) = exp(αna
†
n − α∗

nan) (5)

D(βn) = exp(βnb
†
n − β∗

nbn) (6)

whereαn andβn are complex numbers. Taking a semi-classical approach for the projections
of the spins and denoting by|AF〉 the configuration of figure 1, the excited states are

|αnβn〉 = |αn〉|βn〉 = D(αn)D(βn)|AF〉 (7)

and the coherent states|αn〉 and |βn〉 have the forms

|αn〉 = exp

(
−1

2
α∗

nαn

) ∞∑
ν=0

αν
n√
ν!

|ν〉 (8)

|βn〉 = exp

(
−1

2
β∗

nβn

) ∞∑
ν=0

βν
n√
ν!

|ν〉 (9)

which are eigenstates of the annihilation operatorsan andbn with eigenvaluesαn andβn,
respectively, and|ν〉 is the eigenstate of the simple harmonic oscillator.

The general coherent state of the system is

|αβ〉 =
∏
n

|αnβn〉 (10)

giving for the average energy in that state

〈H 〉 = 〈αβ|H ||αβ〉 = J

2

∑
n,δ±1

[
1

2
(βnβn+δα

∗
nα

∗
n+δ + αnαn+δβ

∗
nβ∗

n+δ)

− 1

4
(|αn|2 − |βn|2)(|αn+δ|2 − |βn+δ|2)

]
+ D

4

∑
n

(|αn|2) − |βn|2)2 − h

2

∑
n

(α∗
nβn + β∗

nαn). (11)



5440 R Ferrer

Figure 3. Poincaŕe mappings in the8–u space for thex–y equilibrium configuration of the
spins for two values of the external magnetic fieldh: (a) h = 0.16; (b) h = 0.24.

Writing the complex numbersαn andβn in the polar representation,αn = ραn exp(iφαn)

andβn = ρβn exp(iφβn), this average takes the form

〈H 〉 = J

2

∑
n

[ραnραn+1ρβnρβn+1 cos(8n+1 + 8n) + ραnραn−1ρβnρβn−1 cos(8n−1 + 8n)]

− J

8

∑
n

(ρ2
αn − ρ2

βn)[(ρ
2
αn+1 − ρ2

βn+1) + (ρ2
αn−1 − ρ2

βn−1)]

+ D

4

∑
n

(ρ2
αn − ρ2

βn)
2 − h

∑
n

ραnρβn cos8n (12)
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Figure 4. For thex–y excitations,(a) 〈Sy〉 on each site for (8initial = 0.7, uinitial = 0.01)
and h = 0.228 786 6666,(b) 〈Sy〉 on each site for (8initial = 0.98, uinitial = 0.01) and
h = 0.239 9994.

where8n ≡ φαn − φβn; the physical meaning of8n is obtained when we take the averages
of the spin operatorsSx

n , S
y
n andSz

n in this state:

〈Sx
n 〉 = ραnρβn cos8n

〈Sy
n 〉 = ±ραnρβn sin8n

〈Sz
n〉 = ±1

2
(ρ2

αn − ρ2
βn).

(13)

Here± stands for the A(+) and B(−) sublattices. In figure 2 we make clear the geometry
affecting two neighbouring spins.

The equations of motion are obtained from the Heisenberg equations iȧn = [an, H ] and
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iḃn = [bn, H ]; we find

iȧn = J

2
a

†
n+1bn+1bn + J

2
a

†
n−1bn−1bn + Jan[na

n+1 − nb
n+1 + na

n−1 − nb
n−1]

+ D(1 + 2(na
n − nb

n))an − h

2
bn

iḃn = J

2
b

†
n+1an+1an + J

2
b

†
n−1an−1an + Jbn[nb

n+1 − na
n+1 + nb

n−1 − na
n−1]

+ D(1 + 2(nb
n − na

n))bn − h

2
an

(14)

with na
n ≡ a

†
nan andnb

n ≡ b
†
nbn.

Figure 5. For thex–y excitations, absolute values of the Fourier transforms (a) 〈Sx
q 〉 and (b)

〈Sy
q 〉; the quantities in parentheses represent the initial values of8 andu.

When these equations are projected into the coherent space we obtain the equations of
motion for αn andβn, i.e., for ραn, ρβn and8n, which with (13) give the dynamics of the
averaged spin operators.
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Figure 6. For thex–y excitations, absolute values of the Fourier transforms〈Sy
q 〉; the quantities

in parentheses represent the initial values of8 andu.

Figure 7. For thex–y excitations, chaotic structure of the absolute value of the Fourier transform
〈Sy

q 〉; the quantities in parentheses represent the initial values of8 andu.

We consider now the two extreme cases:x–y andy–z solitons.
For the x–y soliton we take the condition〈Sz

n〉 ≡ 0 at each site, which means
〈na

n − nb
n〉 = 0 for all n. In this case we obtain the equation

−i8̇n = sin(8n+1 + 8n) + sin(8n−1 + 8n) − h sin8n. (15)

As expected this discrete nonlinear difference equation is independent of the anisotropy
and corresponds to a static configuration, since it gives8̇n = 0. In fact we can deduce
equation (15) by minimizing〈H 〉 with respect to the coherent-state parameters8n and
ραn (∂〈H 〉/∂8n = 0, ∂〈H 〉/∂ραn = 0) with the Schwinger constraint now in the form
ρ2

αn + ρ2
βn = 2S. This static configuration is a well known attribute of the planar solitons.

We must keep in mind that relation (15) holds for both sublattices and that the difference
between the lattices is given in equations (13).
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Figure 8. Poincaŕe mappings of they–z excitations in theu–Sz phase space.(a) D =
0.224 1598; (b) D = 0.45; (c) D = 0.63 (note the zoom).

Defining un+1 ≡ sin(8n+1 + 8n), we construct from (15) the maps

ū = −u + h sin8

8̄ = −8 + νπ + (−1)ν arcsinū
(16)

whereν = 0 or 1, ū ≡ un+1, u ≡ un, 8̄ ≡ 8n+1 and8 ≡ 8n.
We first note that in the phase space8–u this map has a fixed point at (8 =

arccos(h/4), u = 0), which corresponds to the well known spin-flop configuration; this
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Figure 8. (Continued)

is a stable point in the phase space. However, not all of the points in the phase space
correspond to stable situations. Sinai’s stochasticity criterion imposes the diagonalization
of the matrix:

M =
(

∂8̄/∂8 ∂8̄/∂u

∂ū/∂8 ∂ū/∂u

)
. (17)

As detM = 1 the maps (16) preserve the area. The characteristic values are

λ1,2 = −1 + 0.5K1K2

(
1 ±

√
1 − 4

K1K2

)
(18)

where

K1 ≡ h8 K2 ≡ 1/
√

1 − (h sin8 − u)2. (19)

To illustrate the regions of stability, i.e., where|λ1,2| < 1, we scan the8–u plane, for
different values of the magnetic field. Deep-shaded areas in figure 3 correspond to points
with |λ1,2| > 1 (instability), and the sparsely dotted areas are for initial values giving a
nonconsistent mapping; in fact, there we have forced periodicity in theu-variable. For
small values ofh all of the initial values ofu and8 give stable motion, in agreement with
the Kolmogorov–Arnold–Moser (KAM) theorem, and we see the presence of separatrixes
with hyperbolic points at points (8 = nπ, u = 0).
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Increasing the fieldh causes local instabilities, resulting in a mixing of trajectories in
the phase space for some initial points in the neighbourhood of the separatrixes. Also
the existence of stability islands ash increases is confirmed in these patterns—this is a
fundamental property of real physical systems; the number of stability islands increases
with h and we see a variety of sizes and shapes. Smooth regular regions are abundant, and
within these regions there are chaotic regions; the system is then nonintegrable and satisfies
the KAM theorem. Note also that the stochasticity for a given value ofh is strongly
dependent on the relative initial positions of the spins on each sublattice; for example,
if h = 0.24 and8initial = 0.7π , the motion is regular ifuinitial = 0 and stochastic if
uinitial = 0.3. In all of our calculations we takeJ = 1. The route to chaos in thesex–y

excitations seems to be the intermittency; figure 4(a) shows〈Sy〉 on each site for initial
conditions(0.7π, u = 0.01) andh = 0.228 786 6666, making clear the existence of different
frequencies and the presence ofx–y solitons, i.e., the flip of the spins. The case of chaotic
structure for〈Sy〉 is seen in figure 4(b) whereh = 0.239 9994 and for the initial conditions
(0.98π, 0.01).

The equivalent dynamic system is obtained after finding a Hamiltonian leading to the
equations of motion whose solutions are the maps in (16). For our system the equivalent
Hamiltonian is:

He = νπu + (−1)ν
[
u arcsinu +

√
1 − u2

]
+

[
2h cos2

8

2
+ 2u8

] N∑
j=0

δ(x − j) (20)

where thej are the positions of the lattice and thex-coordinate plays the role of time. The
Hamilton equations are

du

dx
= −∂H

∂8
= [h sin8 − 2u]

N∑
j=0

δ(x − j) (21)

d8

dx
= ∂H

∂u
= νπ + (−1)ν arcsinu + 28

N∑
j=0

δ(x − j). (22)

Between the lattice points du/dx = 0 and we have a free rotation with frequency
νπ+(−1)ν arcsinu (ν = 0, 1). The equivalent dynamic system is then a nonlinear pendulum
with that frequency and perturbed by kicks with unit period. Finally, the map is obtained
by integrating in the neighbourhood of theδ-function.

The structure of the chain of spins is given by the averages〈Sx〉 and 〈Sy〉. A question
immediately arises as to whether there exists some kind of short-range order. To answer
this we find it convenient to describe their spectral properties in terms of the corresponding
Fourier transforms:

〈Sx
q 〉 = 1

N

N−1∑
n=0

cos8n exp(−i 2πnq/N)

〈Sy
q 〉 = 1

N

N−1∑
n=0

sin8n exp(−i 2πnq/N).

(23)

In figure 5 we show|〈Sx
q 〉| and |〈Sy

q 〉| as functions of discrete values ofq for h = 0.24
and the initial condition(8 = 0.7π, u = 0.01). We observe relatively large amplitudes
at q = 500 ≈ N/10 andq = 2200 ≈ N/2 for the y-component, indicating an anti-
ferromagnetic order with one subharmonic. For thex-component the maxima are at
q = 0, q = 550 andq = 1100 indicating a ferromagnetic order with two subharmonics.
For h = 0.228 787 and the above initial conditions we obtained the pattern of figure 6,
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Figure 9. Poincaŕe mappings of they–z excitations in theu–Sz phase space forD = 1.38.
(a) The whole region, and(b) the region of the rectangle in(a).

demonstrating a case of antiferromagnetic order of they-component. The chaotic structure
is seen in figure 7 forh = 0.24 and initial conditions(0.98π, 0.01); the stochastic amplitudes
are larger nearN/2, demonstrating the existence of short antiferromagnetic order.

We turn now to the case of they–z solitons. In this case the condition for the solutions
of equations (14) is8j = π/2 for all j . The time-independent,h-independent equations
describing the ground state of the spins are

S
y

j+1S
z
j + S

y

j−1S
z
j − S

y

j Sz
j+1 − S

y

j Sz
j−1 + 2D S

y

j Sz
j = 0. (24)

This difference equation is obtained together with equation (15) when we minimize〈H 〉 in
the form already described.

The consistent mapping for these excitations is constructed by defininguj+1 ≡ S
y

j+1S
z
j −
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Figure 10. For they–z excitations, the absolute value of the Fourier transformSz
q for different

values of the anisotropy,(a) for the initial conditions (Sz = 0.49, u = 0), and(b) for the initial
conditions (Sz = 0.887,u = 0).

S
y

j Sz
j+1; we obtain

ū = −u − 2D
√

1 − (Sz)2Sz

S̄z = −ū
√

1 − (Sz)2 −
√

1 − ū2Sz.
(25)

As the spins haveSx
j = 0 for all j , uj+1 is simply equal to|Sj+1 × Sj | and

we have a simple physical interpretation foru. A fixed point of the map (25) is the
point (Sz = 0, u = 0). However, for D = 2 we obtain a curve of fixed points:
u = −2

√
1 − (Sz)2Sz when |Sz| 6

√
2/2.

Iterations corresponding to (25) are presented in figure 8 for three values of the
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Figure 11. For the y–z excitations, regular behaviour of the absolute value of the Fourier
transformSz

q for D = 1.38 and for the initial conditions (Sz = 0.6231,u = −0.63512) (left-
hand panel); and chaotic behaviour of this magnitude for the initial conditions (Sz = 0.6105,
u = −0.635 12) (right-hand panel).

anisotropyD. It is seen that regularity tends to disappear withD, existing chaotic zones and
an abundance of regular regions between them (KAM). After an interesting orbit of period
four obtained forD = 1, i.e., when the anisotropy equals the antiferromagnetic interaction
J , we get forD > 1 regular orbits and stochastic orbits depending on the initial conditions;
see figure 9. As before,D favours stochasticity, and again there are regular regions inserted
in the stochastic sea.

Let us consider the corresponding spectral analysis for these excitations. We define

Sz
q = 1

N

N−1∑
n=0

Sz
n exp(−i 2πnq/N). (26)

In this way the eight islands in figure 9 are characterized withq = 256. ThereD = 0.45
and the eight points correspond to an orbit withSz

initial = 0.72 anduinitial = 0; in fact |Sz
q |

is peaked atq = 256 = 2048/8 for a chain with 211 = 2048 spins. Obviously, the case
whereD = 1 gives a peak atq = 512.

Let D < 1 and consider the two cases corresponding to the initial conditions (Sz
initial =

0.49, uinitial = 0) and (Sz
initial = 0.887, uinitial = 0). In the first case the KAM torus is

never destroyed for 0< D < 1 and the spectrum shows that|Sz
q | has its first peak near

q = N/2 for small D, and the peak then moves towards smaller values ofq, and that
there are subharmonics, one of them nearq = 0, indicating thatD does not favour the
antiferromagnetic short-range correlations; see figure 10(a). The second case is the one
where the KAM torus can be destroyed for large enoughD. The spectrum is shown in
figure 10(b) where short-range order antiferromagnetism is always present.

For the case whereD > 1 the KAM torus is destroyed for some values of the
anisotropy and initial conditions—for example, takingD = 1.38 and the initial conditions
(Sz

initial = 0.6105, uinitial = −0.635 12); see figure 9. For the sameD and the initial
conditions (Sz

initial = 0.6231, uinitial = −0.635 12) the orbit is regular. In figure 11 we
present the spectrum corresponding to these two cases. Both cases present three peaks near
the same values ofq, but the stochastic case has broader peaks: a route to chaos.

Summarizing, we have investigated the excitations of the antiferromagnetic chain in
two extreme cases:x–y solitons andy–z solitons. In the first case only the magnetic field
is present while in the second only anisotropy is present. In both cases we have static
spatial configurations. As regards the integrability, the system is nonintegrable even in the
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absence of anisotropy or an external field—in contrast with the case of a ferromagnetic
chain with uniaxial anisotropy [10]. A Fourier analysis allows us to determine the existence
of periodic orbits and the existence of fundamentals and harmonic periods of the spatial
structure. Finally, it seems that it may be useful to investigate the case where both the
external field and anisotropy are simultaneously present; the equations that must be solved
are given in (14) and deserve future investigation.
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